

EXPANDING HIGH GRADE
OCTOBER 2021

FORWARD LOOKING STATEMENTS

Forward-looking statements relate to future events or the anticipated performance of G2 Goldfields Inc. (the "Company") and reflect management's expectations or beliefs regarding such future events and anticipated performance. In certain cases, forward-looking statements can be identified by the use of words such as plans", "expects," is expected, "is expected," scheduled, "estimates," increasts, "intends", anticipates' or believes, or variations of such words and phases or statements that certain actions, events or results "may", "could", "would", "might" or "will be taken", "occur" or "be achieved", or the negative of hese words or comparable terminology. By their very nature forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual performance of the Company to be materially different from any anticipated performance expressed or implied by the forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual performance of the Company to be materially different from any anticipated performance expressed or implied by the forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual performance expressed or implied by the forward-looking statements involve known and unknown risks, uncertainties and other commodities, capital and operating costs varying significantly from estimates, political risks, uncertainties relating to the availability and costs and availability of financing needed in the future, changes in equity markets, inflation, changes in exchange rates, fluctuations in commodity prices, delays in the development of projects, conclusions of economic evaluations, changes in project parameters as plans. Continue from the management of the capital performance of the capital performance of the capital performance and the properties of the date of the date of the date of this presentation and the company does not intend, and does actu

TSXV:GTWO OTCQX:GUYGF OCTOBER 2021

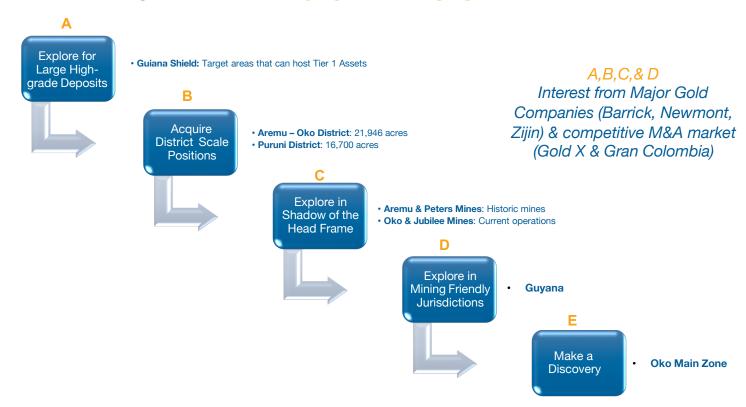
CORPORATE SHARE CAPITAL

CAPITAL STRUCTURE AS OF SEPTEMBER 29, 2021

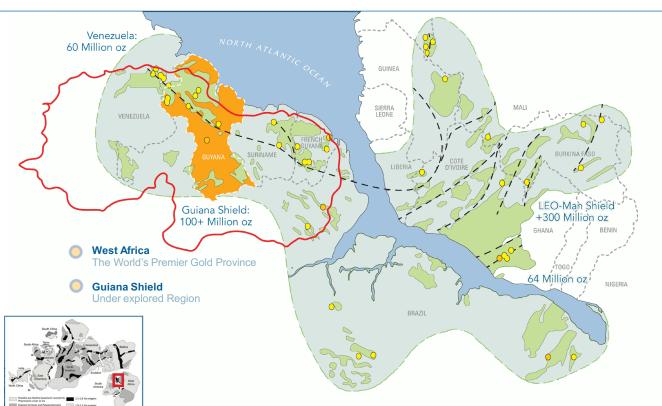
Common Shares Outstanding	132,581,754
Options & RSUs	10,078,750
Warrants	5,373,134
Shares Fully diluted	148,033,638
Fully Diluted Insider Shareholding	48,936,512
Cash Position (September 07, 2021)	C\$2.2 Million
In-the-money warrants & options (due Sep / Oct 2021)	C\$0.8 Million

DISCOVERY TEAM

CHAIRMAN Patrick Sheridan


CHIEF EXECUTIVE OFFICER Dan Noone

GUYANA COUNTRY MANAGER Violet Smith


VP EXPLORATION GUIANA SHIELD Boaz Wade

CLEAR BUSINESSPLAN

THE GUIANA SHIELD: WHY GUYANA?

Guiana Shield:

The Western Half of The World's Premier Paleoproterozoic Gold Province

- Underexplored
- Modern Discoveries of Tier 1 Assets
- Innumerable small scale mining activities
 G2 Goldfields Inc. projects are located in Guyana - the heart of the Guiana Shield.

Guyana

- · Fastest growing economy in Sth. America
- English Speaking
- British Law
- · Mining Friendly

PALEOPROTEROZOIC (RHYACIAN) COLD DEPOSITS, WEST AFRICA

TARGET M ODEL

Obuasi

- 70 Million Oz Au District
- Paleoproterozoic: 2 Billion years ago
- Mineralisation on Basin Margins
- Host Rock Carbonaceous Sediments
- Intrusive rocks nearby

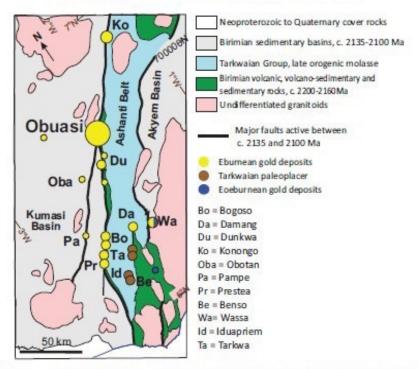
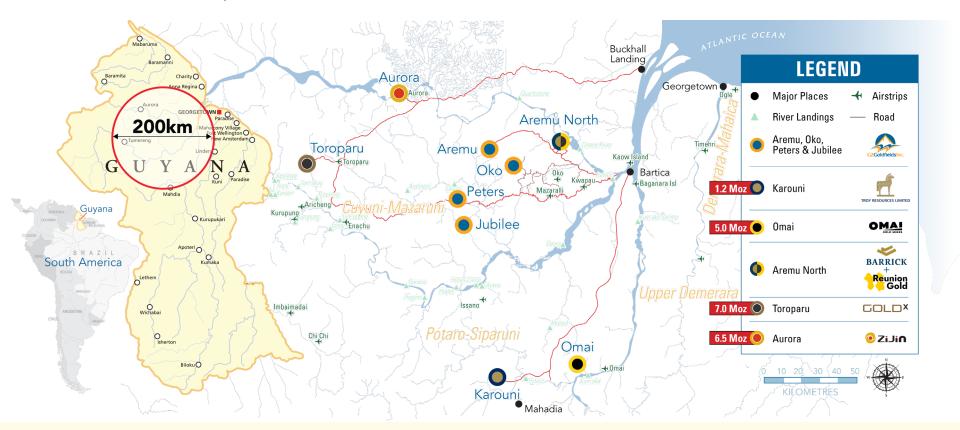
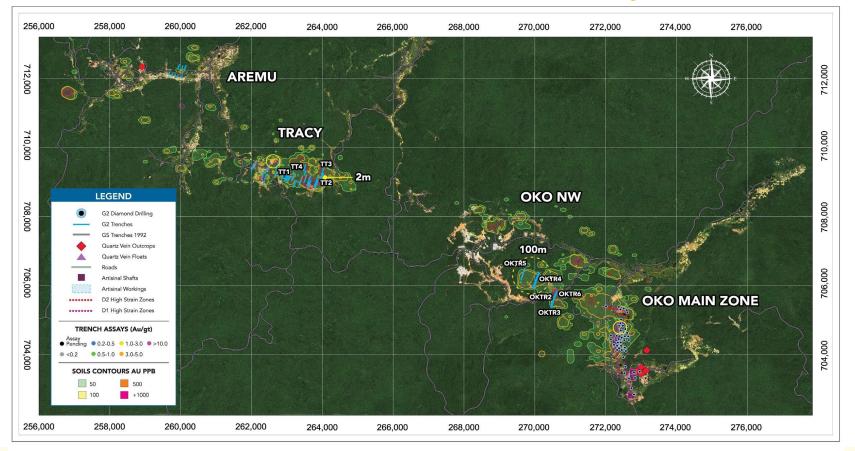
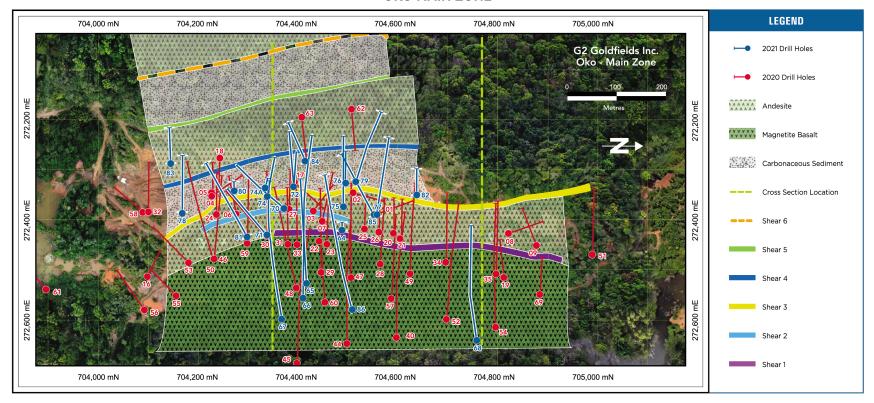
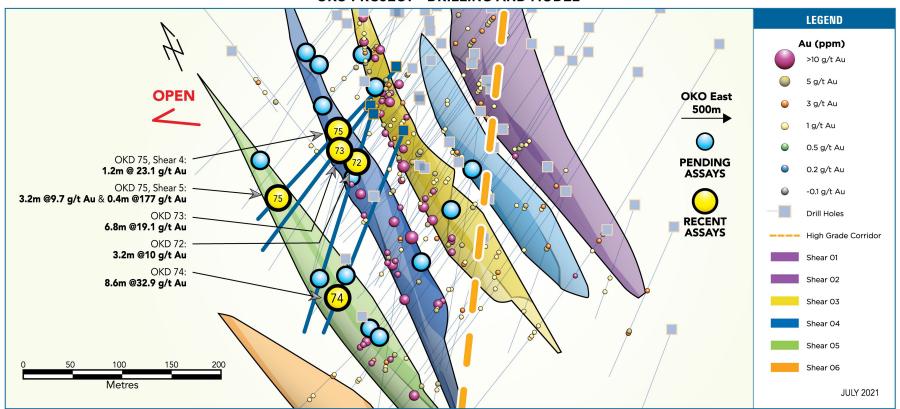




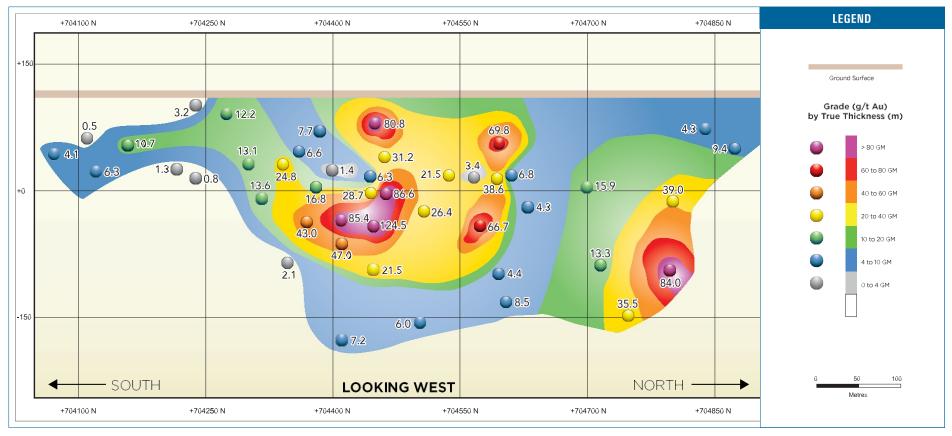
Fig. 2. Summary geologic map showing the regional geologic setting of Obuasi and other gold deposits in southern Chana (modified after Oliver et al., 2020).

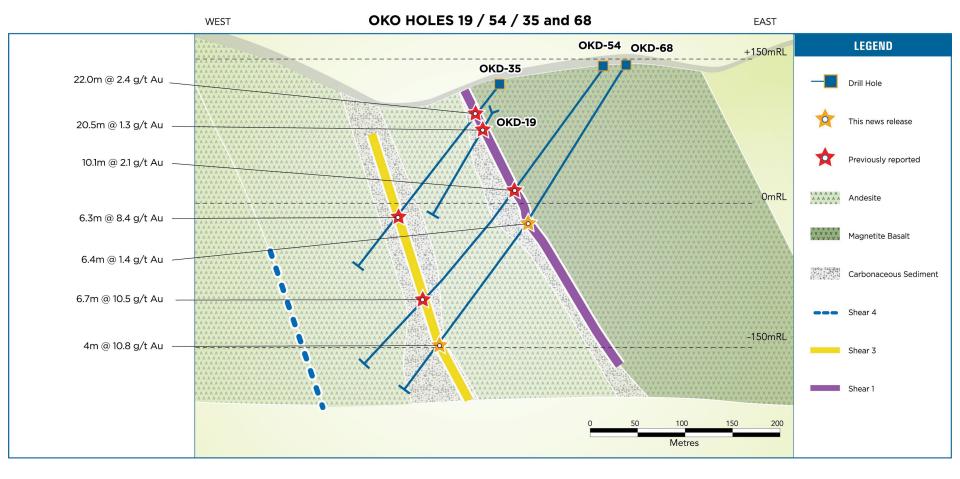

Operating in one of the world's great gold provinces Led by a team that has discovered 9 Million ounces to date

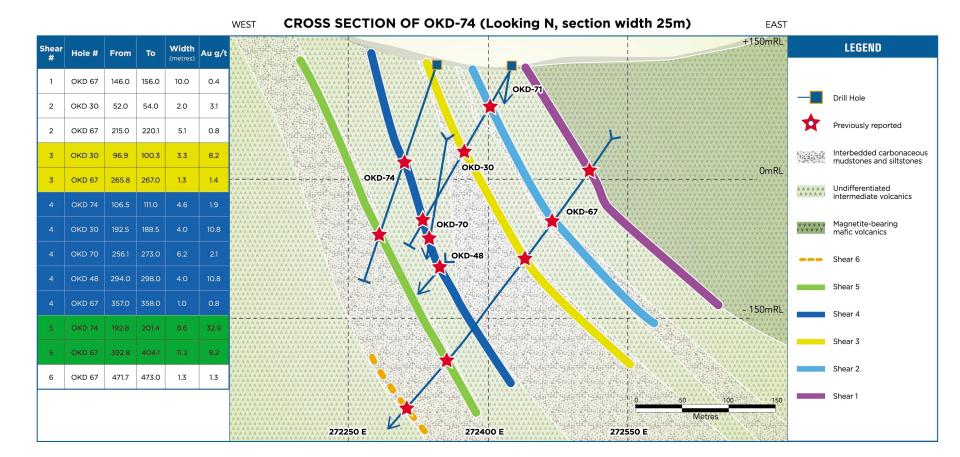
AREMU OKO DISTRICT - 17 km long



OKO MAIN ZONE

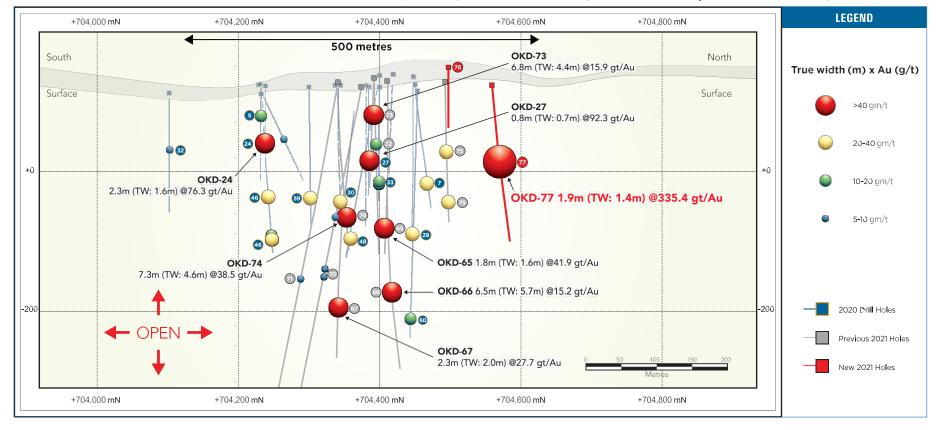



OKO PROJECT - DRILLING AND MODEL



OKO MAIN ZONE: SHEAR 3 LONG SECTION: GRADE x TRUE THICKNESS CONTOURS

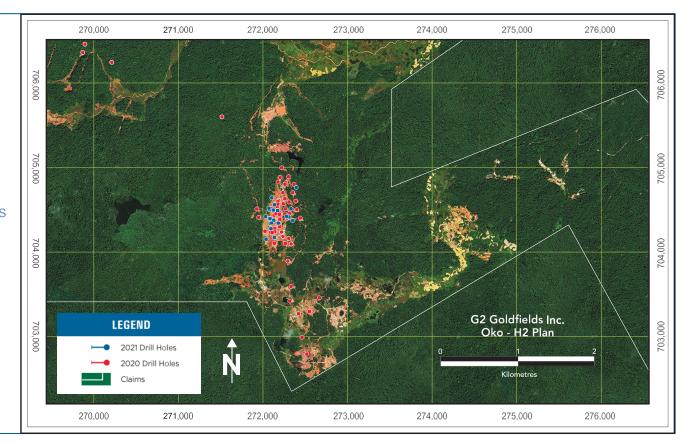
OKO MAIN ZONE


CONSISTENT HIGH GRADE GOLD				200 mE 2	72, 400 mE	272, 6 00 mE	272, 800 ml	E H	CONSISTENT HIGH GRADE GOLD		
OKD Hole Number	Width in Meters	g/t Au	705, 000 r		● 51			8	OKD Hole Number	Width in Meters	g/t Au
1	6.0	15.0	m					705,	35	4.0	10.2
2	3.0	4.6			•09	-● 69	\wedge		46	2.5	17.8
3	12.0	13.8	704,		081	, \ / /		빌	46	2.5	4.7
4	1.8	6.2	8 \	_	35	●·54		704, 8d0 mE	46	0.7	33.7
5	8.2	9.1] #	l .		● 68		Š	47	0.8	10.6
6	2.7	6.5		_	34	● 52			47	4.4	9.5
7	1.7	30.8	704,	82	0.40			핕	48	2.1	21.2
7	2.7	15.8	4, 600	85	20 20	● 57		일 [48	1.6	26.1
8	1.5	5.2	mm / / / '	79	26 28 01 26 28			70,	54	3.2	8.4
9	2,3	7.8	62-W	76 02	4/	86			54	6.7	10.5
17	1.4	8.0			07 23	60		밑			
17	4.1	12.9	704, 4	• 84 <u>(•17</u>	27 31 33	65 66)	400 m	59	4.0	8.9
19	1.5	11.5	400 mE		27 31 70 71 74 71 4a 30	67		704, 4	60	2.6	8.6
20	11.7	7.2		$\mathbb{Z}^{\bullet_{i}}$	4a 30			_	60	1.4	13.8
22	2.5	11.8		80	-006 24		//		65	5.0	19.0
23	2.8	14.8	704,	18 05 0	46			200 mE	65	6.5	12.9
24	2.4	116.6	2001		78 53			4, 2	66	1.7	33.3
25	3.7	7.2	_ I = I		. / - /	● 55	~/ //	704,	66	6.5	15.3
27	1.0	8.0			58	56			67	11.3	9.2
27	4.0	19.5	70	/	, //		/ / I	띹	68	3.8	10.2
28	6.9	5.1	704,000					obo mE	72	3.2	10.0
28 29	2.2	30.8 49.0	m					70,	73	6.8	19.0
29	3.2	49.0 11.5	1			-61			74	8.6	32.9
30	1.8	14.9		(0	PEN)				75	3.2	10.0
30	4.0	10.8	272,	200 mE 2	72, 400 mE	272, 600 mE	272, 800 ml	E	75	0.4	177.0

Widths reported are drill indicated core length. True widths are estimated at 64% to 80% of core lengths for holes OKD-55 to OKD-59. Average grades are calculated with un-capped gold assays, as insufficient drilling has been completed to determine capping levels for higher grade intercepts.

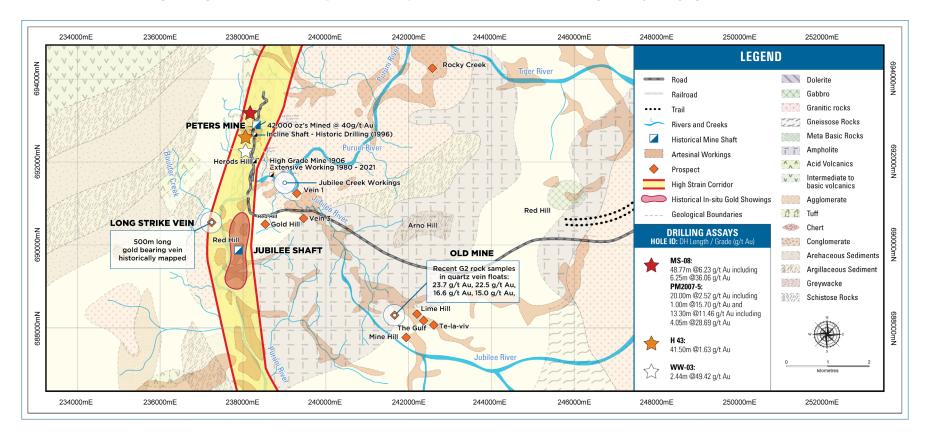
All holes are drilled at an angle of 60 degrees to the horizontal.

OKO LONG SECTION WITH GOLD ASSAYS (UNCUT) IN SHEARS 4 & 5 (LOOKING WEST, SEPTEMBER 2021)


OKO H2 PLAN

Expand Oko Main Zone Mineralization

- Add a Second Drill Rig
- Continue "Step Out" Drilling
- Test for more parallel shear zones


Explore Targets Adjacent to Oko Main Zone

- Map extensive mine workings
- Develop geological and mineralization models
- Define Targets Drill Test Them

PURUNI DISTRICT: PETERS & JUBILEE

PURUNI DISTRICT

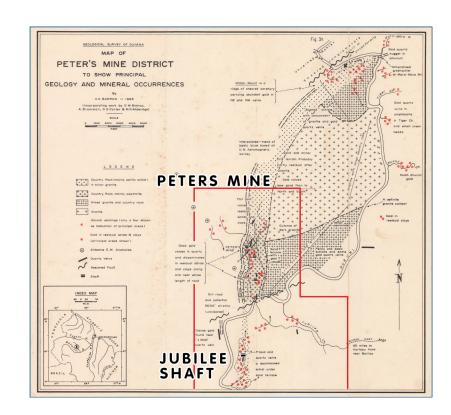
PETERS MINE

- Guyana's first gold mine in 1905
- Highest-grade historic mine in Guyana
- Historic USGS resource of 160K oz Au at 1 oz. / ton
- Produced 41,915 Oz 1905-1910

PURUNI DISTRICT

JUBILEE MINE

- Operational open pit
- Undrilled asset
- Historic workings: one vertical shaft
- High grade sampling in Main Mine Area
- Option to earn 100% interest


PURUNI DISTRICT WORK PLAN

JUBILEE MINE

- Maiden drill program 6 holes
- Targeting high grade vein system
- Vein material up to 23 g/t Au

PETERS MINE

- 6-hole drill program
- Designed to test Geological and Mineralization Model
- SW plunging shoot containing High Grade flat lodes
- Plan to test mineralization to 500m.
- Mapping & sampling of extensive workings
- Develop district Mineralization Model
- Generate drill targets

VALUE PROPOSITION

Existing property portfolio shows considerable potential for significant gold discoveries

- ✓ Heart of premier gold district
- ✓ Strong property portfolio
- ✓ Best in-district discovery team
- ✓ Management invested + \$5 Million to date

COMPETITOR ACTIVITY

C	ompany	Project	Activity	Mkt Cap US\$ Million
•	Barrick	Aremu Nth/Karouni	Proposed Drill Program Aremu Nth	45,000
•	Zijin	Aurora Mine	Mine Lease Exploration	40,000
•	Gran Columbia	Toroparu	Takeover of Gold X	350
•	Reunion	Oko West	11,000m Drill Program	35
•	Omai	Omai Mine	5,000m Drill Program	28
•	Gold Source	Eagle Mountain	PEA	39
•	Tajiri Resources	Epieus	Mapping, Trenching & Sampling	7
•	Golden Shield	Marudi / Arakaka	RTO of Goldblock Capital	
•	G2 Goldfields	Oko Discovery	10,000 meter drill program	65

MISSION

Striving for operational excellence in pursuit of large high-grade gold deposits in the Guiana Shield.

VISION

Responsible mineral exploration as a catalyst for transformative shared economic and social value in regions where we operate.

VALUES

The G2 commitment to people and planet drives our determination to champion socially and environmentally conscious mineral resource development in Guyana.

CONTACT

CORPORATE HEAD OFFICE

141 Adelaide Street West

Suite 1101

Toronto, ON., Canada

M5H 3L5

Dan Noone, CEO

+1 416.628.5904

d.noone@g2goldfields.com

Christopher Hough, **Investor Relations** +1 416.628.5904 ext. 1108

11 110.020.000 1 6.4... 1100

christopher.hough@g2goldfields.com

News & Media

news@g2goldfields.com

TSXV: GTWO

OTCQX: GUYGF

@G2Goldfields

