

EXPANDING HIGH GRADE SEPTEMBER 2021

FORWARD LOOKING STATEMENTS

Forward-looking statements relate to future events or the anticipated performance of G2 Goldfields Inc. (the "Company") and reflect management's expectations or beliefs regarding such future events and anticipated performance. In certain cases, forward-looking statements can be identified by the use of words such as "plans", "expects", "is expected", "budget", "scheduled", "estimates", "ould", would, "might" or "will be taken, "occur" or "be achieves", or variations of such words and phrases or statements that certain actions, events or results "may", "could", would, "would, "might" or "will be taken, "occur" or "be achieved", or the negative of these words or comparable terminology. By their very nature forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual performance of the Company to be materially different from these forward-looking statements include risks related to failure to define mineral resources, to convert estimated mineral resources to reserves, the grade and recovery of ore which is miner varying from estimates, future prices of and availability of financing needed in the future, charges in equity markets, inflation, changes in exchange rates, futurations in commodities, and other rakes and other risks involved in the mineral exolores to compare in project parameters as plans continue to be refined, uninsured risks and other risks involved in the mineral exoloration and development industry. Although the Company has attempted to identify important factors that could cause actual performance to differ materially from that described in forward-looking statements, there may be other factors that cause its performance events could differ materially from statements. The be no assured word-looking statements. These forward-looking statements are made as of the date of this presentation and the company date intend, and does not assure any obligition, to update these forward-looking statements are made as of the date of this pre

CORPORATE SHARE CAPITAL

CAPITAL STRUCTURE AS OF SEPTEMBER 7, 2021

Common Shares Outstanding	130,366,754
Options & RSUs	10,278,750
Warrants	7,388,134
Shares Fully diluted	148,033,638
Fully Diluted Insider Shareholding	48,936,512
Cash Position (September 07, 2021)	C\$2.2 Million
In-the-money warrants & options (due Sep / Oct 2021)	C\$0.8 Million

TSXV:GTWO OTCQX:GUYGF

CHAIRMAN Patrick Sheridan

DISCOVERY TEAM

CHIEF EXECUTIVE OFFICER Dan Noone

GUYANA COUNTRY MANAGER Violet Smith

VP EXPLORATION GUIANA SHIELD Boaz Wade

CLEAR BUSINESSPLAN

THE GUIANA SHIELD: WHY GUYANA?

TSXV:GTWO OTCQX:GUYGF

Guiana Shield:

The Western Half of The World's Premier Paleoproterozoic Gold Province

- Underexplored
- Modern Discoveries of Tier 1 Assets
- Innumerable small scale mining activities

G2 Goldfields Inc. projects are located in Guyana - the heart of the Guiana Shield.

Guyana

- · Fastest growing economy in Sth. America
- English Speaking
- British Law
- Mining Friendly

TARGET M ODEL

Obuasi

- 70 Million Oz Au District
- Paleoproterozoic: 2 Billion years ago
- Mineralisation on Basin Margins
- Host Rock Carbonaceous Sediments

Fig. 2. Summary geologic map showing the regional geologic setting of Obuasi and other gold deposits in southern Chana (modified after Oliver et al., 2020).

Intrusive rocks nearby

PALEOPROTEROZOIC (RHYACIAN) COLD DEPOSITS, WEST AFRICA

Operating in one of the world's great gold provinces Led by a team that has discovered 9 Million ounces to date

AREMU OKO DISTRICT – 17 km long

OKO MAIN ZONE

OKO PROJECT - DRILLING AND MODEL

OKO MAIN ZONE: SHEAR 3 LONG SECTION: GRADE x TRUE THICKNESS CONTOURS

OKO HOLES 19 / 54 / 35 and 68

G2Goldfields

WEST CROSS SECTION OF OKD-74 (Looking N, section width 25m)

EAST

TSXV:GTWO OTCQX:GUYGF

OKO MAIN ZONE

CONSISTENT HIGH GRADE GOLD				72, 200 mE	272, 400 mE	272, 600 mE	272, 800 mE	CONSISTENT HIGH GRADE GOLD		
OKD Hole Number	Width in Meters	g/t Au	705, 000 r		• 51		8	OKD Hole Number	Width in Meters	g/t Au
1	6.0	15.0	- m				705.	35	4.0	10.2
2	3.0	4.6			09		Λ	46	2.5	17.8
3	12.0	13.8	704,		08	,19	800 mE	46	2,5	4.7
4	1.8	6.2	00		35	• 54	800	46	0.7	33.7
5	8.2	9.1		N		• 68	704.	47	0,8	10,6
6	2.7	6.5			34	• 52		47	4.4	9.5
7	1.7	30.8			82) _e		2,1	21.2
7	2.7	15.8	704, 600 mE		85 20	• 40	600 mE	40		
8	1.5	5.2			01 26 28		704.6	10	1.6	26.1
9	2.3	7.8		2-W1 76	4	⁷ •86		54	3.2	8.4
17	1.4	8.0		2-W1 76 -	75 54 07 23	60	\setminus	54	6.7	10.5
17	4.1	12.9	704,	62	03 22 2	9 •65 •66	400 mE	59	4.0	8.9
19	1.5	11.5	, 400 mE	72	27 31 33	48 67	704.40	60	2.6	8.6
20	11.7	7.2	_ ≞		74 71 •74a •• 30		2	60	1.4	13.8
22	2.5	11.8			80 006			65	5.0	19.0
23	2.8	14.8	- ⁷	18.	24 46		200 mE	65	6.5	12.9
24	2.4	116.6	20		78 53		50	66	1.7	33.3
25	3,7	7.2	_ m /		3	• 55	704.	66	6,5	15,3
27	1.0	8.0		-	32	16		67	11,3	9.2
27	4.0	19.5			58	56			3.8	10.2
28	6.9	5.1	704, 000 mE				000 mE	08		
28	2.2	30.8	0				704. 00		3.2	10.0
29	2.7	49.0				/		, , , , , , , , , , , , , , , , , , , ,	6.8	19.0
29	3.2	11.5				•61		74	8.6	32.9
30	1.8	14.9			(OPEN)			75	3.2	10.0
30	4.0	10.8	2	72, 200 mE	272, 400 mE	272, 600 mE	272, 800 mE	75	0.4	177.0

Widths reported are drill indicated core length. True widths are estimated at 64% to 80% of core lengths for holes OKD-55 to OKD-59. Average grades are calculated with un-capped gold assays, as insufficient drilling has been completed to determine capping levels for higher grade intercepts.

All holes are drilled at an angle of 60 degrees to the horizontal.

OKO VISIBLE GOLD

Expand Oko Main Zone Mineralization

- Add a Second Drill Rig
- Continue "Step Out" Drilling
- Test for more parallel shear zones

Explore Targets Adjacent to Oko Main Zone

- Map extensive mine workings
- Develop geological and mineralization models
- Define Targets Drill Test Them

PURUNI DISTRICT: PETERS & JUBILEE

PURUNI DISTRICT

PETERS MINE

- Guyana's first gold mine in 1905
- Highest-grade historic mine in Guyana
- Historic USGS resource of 160K oz Au at 1 oz. / ton
- Produced 41,915 Oz 1905-1910

PURUNI DISTRICT

JUBILEE MINE

- Operational open pit
- Undrilled asset
- Historic workings: one vertical shaft
- High grade sampling in Main Mine Area
- Option to earn 100% interest

PURUNI DISTRICT WORK PLAN

JUBILEE MINE

- Maiden drill program 6 holes
- Targeting high grade vein system
- Vein material up to 23 g/t Au

PETERS MINE

- 6-hole drill program
- Designed to test Geological and Mineralization Model
- SW plunging shoot containing High Grade flat lodes
- Plan to test mineralization to 500m
- Mapping & sampling of extensive workings
- Develop district Mineralization Model
- Generate drill targets

VALUE PROPOSITION

Existing property portfolio shows considerable potential for significant gold discoveries

- ✓ Heart of premier gold district
- ✓ Strong property portfolio
- ✓ Best in-district discovery team

Management invested + \$5 Million to date

COMPETITOR ACTIVITY

Company	Project	Activity	Mkt Cap US\$ Million
Barrick	Aremu Nth/Karouni	Proposed Drill Program Aremu Nth	45,000
• Zijin	Aurora Mine	Mine Lease Exploration	40,000
Gran Columbia	Toroparu	Takeover of Gold X	350
Reunion	Oko West	11,000m Drill Program	35
• Omai	Omai Mine	5,000m Drill Program	28
Gold Source	Eagle Mountain	PEA	39
Tajiri Resources	Epieus	Mapping, Trenching & Sampling	7
Golden Shield	Marudi / Arakaka	RTO of Goldblock Capital	
G2 Goldfields	Oko Discovery	10,000 meter drill program	65

MISSION

Striving for operational excellence in pursuit of large high-grade gold deposits in the Guiana Shield.

VISION

Responsible mineral exploration as a catalyst for transformative shared economic and social value in regions where we operate.

VALUES

The G2 commitment to people and planet drives our determination to champion socially and environmentally conscious mineral resource development in Guyana.

CONTACT

CORPORATE HEAD OFFICE

141 Adelaide Street West

Suite 1101

Toronto, ON., Canada

M5H 3L5

Dan Noone, CEO

+1 416.628.5904

d.noone@g2goldfields.com

Christopher Hough, Investor Relations +1 416.628.5904 ext. 1108

christopher.hough@g2goldfields.com

News & Media

news@g2goldfields.com

TSXV: GTWO OTCQX: GUYGF

TSXV:GTWO OTCQX:GUYGF