

LIGHTENING STRIKES TWICE

F O R W A R D L O O K I N G S T A T E M E N T S

Forward-looking statements relate to future events or the anticipated performance of G2 Goldfields inc. (the "Company") and reflect management's expectations or beliefs regarding such future events and anticipated performance. In certain cases, forward-looking statements can be identified by the use of words such as "plans", "expected", "buget", "scheduled", "estimates", "forecasts", "intends", "anticipates" or "believes", or variations of such words and phrases or statements that certain actions, events or results "may", "could", "would", "might" or "will be taken", "occur" or "be achieved", or the negative of these words or comparable terminology. By their very nature forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual performance of the Company to be materially different from any anticipated performance expressed or implied by the forward-looking statements include risks related to failure to define mineral resources, to convert estimated mineral resources to reserves, the grade and recovery of ore which is mined varying from estimates, future prices of gold and other commoditive, capital and operating costs varying significantly from estimates, political risks, uncertainties relating to the availability and costs and availability of financing needed in the future, changes in equity markets, inflation, changes in expectations in commodity prices, delays in the development of projects, conclusions of economic evaluations, changes in project parameters as plans continue to be refined, uninsured risks and other risks involved in the mineral exploration and development industry. Although the Company has attempted to identify important factors that could cause actual performance on the orward-looking statements. There may be other factors that cause its performance to the reak as attripated. There can be no assurance that forward-looking statements as actual results and future events ould differ materially from that description and aveclopment ind

MISSION

Striving for operational excellence in pursuit of large highgrade gold deposits in the Americas.

VISION

Responsible mineral exploration as a catalyst for transformative shared economic and social value in regions where we operate.

VALUES

The G2 commitment to people and planet drives our determination to champion socially and environmentally conscious mineral resource development in the Americas.

WHY GUYANA?

Operating in one of the world's great gold provinces

Led by a team that has discovered 9 Million ounces to date

CHAIRMAN Patrick Sheridan

DISCOVERY TEAM

CHIEF EXECUTIVE OFFICER Dan Noone

GUYANA COUNTRY MANAGER Violet Smith

V P E X P L O R A T I O N G U I A N A S H I E L D Boaz Wade

G2 has assembled a package of highly prospective properties and has already made its first discovery at OKO

OKO SOUTH / MAIN ZONE

OKO DRILL HIGHLIGHTS

High Grade Highlights		272,200 mE 272,400 mE 272,600 mE 272,800 mE	High G	Frade Highlights
OKD-01	27.0 m @ 5.2 g/t Au	705,000 mV	OKD-28	6.9 m @ 5.1 g/t Au
including	6.0 m @ 15.8 g/t Au	705,000	and	2.2 m @ 30.8 g/t Au
OKD-02	3.0 m @ 4.6 g/t Au		OKD-29	2.7 m @ 49.0 g/t Au
OKD-03	12 m @ 13.8 g/t Au	004,800 mN	and	3.2 m @ 11.5 g/t Au
OKD-04	1.8 m @ 6.2 g/t Au		OKD-30	1.8 m @ 14.9 g/t Au
OKD-05	8.2 m @ 9.1 g/t Au	ĮŽ	and	4.0 m @ 10.8 g/t Au
OKD-06	2.7 m @ 6.5 g/t Au	ZE ZE	OKD-35	25 m @ 2.2 g/t Au
OKD-07	1.7 m @ 30.8 g/t Au		and	4.0 m @ 10.6 g/t Au
OKD-07	2.7 m @ 15.8 g/t Au	0009'F002 100'F00 100 100'F00 100'F00 100'F	OKD-46	2.5 m @ 17.8 g/t Au
OKD-08	1.5 m @ 5.2 g/t Au		and	2.5 m @ 4.7 g/t Au
OKD-09	2.3 m @ 7.8 g/t Au	ZE 62 62 62 73 62 ZE ZE	and	0.7 m @ 33.7 g/t Au
OKD-17	1.4 m @ 8.0 g/t Au		OKD-47	12.6 m @ 2.3 g/t Au
OKD-17	4.1 m @ 12.9 g/t Au	704,400 1 704,400 1 704,400 1	including	0.8 m @ 10.6 g/t Au
OKD-19	1.5 m @ 11.5 g/t Au		and	4.4 m @ 9.5 g/t Au
OKD-20	11.7 m @ 7.2 g/t Au	Nm 002, 407	OKD-48	2.1 m @ 21.2 g/t Au
including	1.8 m @ 22.2 g/t Au	704,200 704,200	and	1.6 m @ 26.1 g/t Au
OKD-22	2.5 m @ 11.8 g/t Au	10 ²	OKD-54	10.1 m @ 2.1 g/t Au
including	1.0 m @ 24.0 g/t Au	Z • • • • • • • • • • • • • • • • • • •	and	3.2 m @ 8.4 g/t Au
OKD-23	2.8 m @ 14.8 g/t Au		and	6.7 m @ 10.5 g/t Au
OKD-24	2.4 m @ 116.6 g/t Au	704,000 mN	OKD-57	8.1 m @ 1.8 g/t Au
OKD-25	3.7 m @ 7.2 g/t Au	F F	OKD-59	4.0 m @ 8.9 g/t Au
OKD-27	1.0 m @ 8.0 g/t Au	(0753)	0XD 60 67	Bandlan
and	4.0 m @ 19.5 g/t Au	272,200 mE 272,400 mE 272,600 mE 272,800 mE	OKD-60 - 63	Pending

Widths reported are drill indicated core length. True widths are estimated at 64% to 80% of core lengths for holes OKD-55 to OKD-59. Average grades are calculated with un-capped gold assays, as insufficient drilling has been completed to determine capping levels for higher grade intercepts.

All holes are drilled at an angle of 60 degrees to the horizontal.

C R O S S S E C T I O N 7 0 4 4 5 0

OKO VISIBLE GOLD

TSXV:GTWO OTCQX:GUYGF

A R E M U D I S T R I C T G E O L O G Y

G2 holds an 100% interest in two historic and past producing gold mines

P U R U N I D I S T R I C T

PETERS MINE

- Guyana's first gold mine in 1905
- Highest-grade historic mine in Guyana
- Historic USGS resource of 160K oz Au at 1 oz. / ton
- Produced 41,915 Oz 1905-1910

P U R U N I D I S T R I C T

JUBILEE MINE

- Operational open pit
- Undrilled asset
- Historic workings: one vertical shaft
- High grade sampling in Main Mine Area
- Option to earn 100% interest

AGGRESSIVE Q1/Q2 DRILLING SCHEDULE

March: OKO Drilling •

- May: Maiden Drill Program at Jubilee Creek •
- April: Drilling of follow up holes at Aremu June: Peters Mine Drilling

VALUE PROPOSITION

Existing property portfolio shows considerable potential for significant gold discoveries

- ✓ Heart of premier gold district
- ✓ Strong property portfolio
- ✓ Best in-district discovery team
- ✓ Management invested over \$5 Million to date

CORPORATE SHARE CAPITAL

C A P I T A L S T R U C T U R E A S O F A P R I L 2 6 , 2 0 2 1

Common Shares Outstanding	126,556,754
Options	8,250,000
Warrants	10,910,634
Shares Fully diluted	146,917,388
Fully Diluted Insider Shareholding	49,136,512

C O N T A C T

CORPORATE HEAD OFFICE

141 Adelaide Street West Suite 1101 Toronto, ON., Canada M5H 3L5

Dan Noone, CEO

+1 416.628.5904

d.noone@g2goldfields.com

News & Media Inquiries news@g2goldfields.com

> TSXV: GTWO OTCQX: GUYGF

@G2Goldfields

TSXV:GTWO OTCQX:GUYGF